
Proceedings of the 2010 Winter Simulation Conference 

B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds. 

 

 

 

SYSTEMS ENGINEERING FOR DISTRIBUTED LIVE, VIRTUAL, AND CONSTRUCTIVE 

(LVC) SIMULATION 

 

 

Scott Gallant Chris Gaughan 

  

 U.S. Army Research, Dev. & Eng. Command 

Effective Applications Corporation Simulation & Training Technology Center (STTC) 

318 Osprey Lakes Circle 12423 Research Parkway, Orlando, FL  32826 

Chuluota, FL 32766, USA Orlando, FL 20052, USA 

 

 

ABSTRACT 

Designing a distributed simulation environment across multiple domains that typically have disparate 

middleware transport protocols, data exchange formats and applications increases the difficulty of captur-

ing and linking system design decisions to the resultant implementation. Systems engineering efforts for 

distributed simulation environments are typically based on the middleware transport used, the applica-

tions available and the constraints placed on the technical team including network, computer and person-

nel limitations. 

 To facilitate community re-use, systems engineering should focus on integrated operational function 

decomposition. This links data elements produced within the simulation to the functional capabilities re-

quired by the user. The system design should be captured at a functional level and subsequently linked to 

the technical design. Doing this within a data-driven systems engineering infrastructure allows generative 

programming techniques to assist accurate, flexible and rapid architecture development. This paper de-

scribes the MATREX program systems engineering process, infrastructure and path forward. 

1 INTRODUCTION 

Simulationists who require the use of distributed simulation typically do not have a long life cycle for an 

experiment, analysis initiative or simulation-based event. To reduce cost, they need to use a well-

established simulation architecture and robust models that are easy to integrate with other distributed si-

mulations. This short lead time for system design, development, integration and execution forces the sys-

tem definition and design to happen very quickly.  

These simulation users rely on standards and influence to simulation developers to get the systems to 

communicate using the same syntax. This often works to instantiate a System of Systems (SoS) architec-

ture (Jamshidi 2008) and get models to share information. A SoS environment is an assembly of applica-

tions that together provide more capability than the sum of their individual capabilities. Within the M&S 

community, the applications assembled are focused on representing a specific warfare function based on 

data and models from an organization considered to be the center of excellence for that function. The SoS 

architecture provides many benefits above a single instance of Semi-Automated Forces (SAF) modeling 

including performance, model management and information transparency for analysis. 

However, the biggest problem in these cases is that the models do not work together semantically for 

the accomplishment of the high level functions that the users require. In other words, applications may not 

be communicating based on a consistent understanding of the context and connotation of the information 

being shared. We have developed a tool that ensures semantic interoperability traced back to functional 

requirements. We have learned many lessons in our work and have some ideas for the future of Systems 

Engineering SoS architectures. 

1501978-1-4244-9864-2/10/$26.00 ©2010 IEEE



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington

VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number. 

1. REPORT DATE 

DEC 2010 
2. REPORT TYPE 

3. DATES COVERED 

  00-00-2010 to 00-00-2010  

4. TITLE AND SUBTITLE 

Systems Engineering for Distributed, Live, Virtual, and Constructive
(LVC) Simulation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research, Dev. & Eng. Command,Simulation & Training
Technology Center (STTC),12423 Research Parkway,Orlando,FL,32826 

8. PERFORMING ORGANIZATION

REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 

NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

Presented at the Proceedings of the 2010 Winter Simulation Conference, 5-8 Dec, Baltimore, MD 

14. ABSTRACT 

Designing a distributed simulation environment across multiple domains that typically have disparate
middleware transport protocols, data exchange formats and applications increases the difficulty of
capturing and linking system design decisions to the resultant implementation. Systems engineering efforts
for distributed simulation environments are typically based on the middleware transport used, the
applications available and the constraints placed on the technical team including network, computer and
personnel limitations. To facilitate community re-use, systems engineering should focus on integrated
operational function decomposition. This links data elements produced within the simulation to the
functional capabilities required by the user. The system design should be captured at a functional level and
subsequently linked to the technical design. Doing this within a data-driven systems engineering
infrastructure allows generative programming techniques to assist accurate, flexible and rapid architecture
development. This paper describes the MATREX program systems engineering process, infrastructure and
path forward. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 

ABSTRACT 

Same as
Report (SAR) 

18. NUMBER

OF PAGES 

11 

19a. NAME OF

RESPONSIBLE PERSON 
a. REPORT 

unclassified 

b. ABSTRACT 

unclassified 

c. THIS PAGE 

unclassified 

Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std Z39-18 



Gallant and Gaughan 

 

Our intended path forward is to increase the use of generative programming techniques, or automati-

cally generating executable computer programming artifacts from a higher level source, in order to quick-

ly deploy a SoS architecture for military analysis. The flexibility required to implement our goal requires 

systems architecture qualities and objectives such as encapsulation of functionality into appropriately 

sized portions to be able to manipulate and construct larger capabilities as needed with as little engineer-

ing effort as possible. We’d like to provide an architecture that is fully compliant with U.S. Army-grade 

verification and validation guidance (DAU 2008) and robust enough for decision-oriented analysis while 

maintaining flexibility and quickness in order to save the Army tremendous amounts of time and effort 

(Page et al. 2001) when constructing distributed Modeling & Simulation (M&S) environments for various 

uses. 

1.1 MATREX Overview 

The Modeling Architecture for Technology Research and EXperimentation (MATREX) provides a unify-

ing distributed Modeling and Simulation (M&S) architecture and supporting tools and resources that ease 

the integration and use of multi-resolution live, virtual, and constructive (LVC) applications. It enables 

full spectrum analysis of system designs and operational concepts while reducing risk and acquisition 

timelines (Tufarolo et al. 2004). To provide this capability across the Army and the other Services, the 

Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) and the Re-

search, Development & Engineering Command (RDECOM) have funded development of the MATREX 

program. The MATREX environment, including the toolset and resources, is available as Government-

Furnished Software (GFS) with some support and training available. 

An important aspect of MATREX is its capability to leverage many M&S resources developed at 

RDECOM laboratories, centers and activities as well as the larger Army and other Services. The world-

class RDECOM team of M&S experts has utilized MATREX to identify issues, exercise requirements, 

align development efforts and conduct experiments that involve SoS technologies beyond the expertise of 

any one part of RDECOM. 

Additionally, the MATREX environment is used for a variety of purposes. These numerous and often 

generic uses of MATREX offer a difficult systems engineering challenge in linking system requirements 

to detailed system design and technical dependencies. To facilitate customization for a given user’s goals, 

the MATREX systems design team has developed a highly flexible and configurable system design that 

will allow it to meet a wide breadth of user requirements. 

1.2 System Design Description Infrastructure Overview 

The MATREX suite of models, tools and architecture allow for many different possible configurations of 

the system to achieve the user’s functional requirements. The philosophy is to work with the users to de-

velop a System Design Description (SDD) that meets their exercise requirements, data decomposition re-

quirements, system architecture guidelines, scenario, configuration choices and model selection. 

The MATREX program has developed its general SDD to capture the system design at a functional 

level and subsequently link the functional design to the technical design. This allows the functional re-

quirements to be linked to system design and allocated to specific models as shown in Figure 1. 

The low level requirements, object model and test cases can then be auto-generated based on model 

allocation to functions. The SDD is data-driven, easing information maintenance duties by linking the 

system engineering products and simplifying the editing of the system design. The SDD also allows for 

auto-generating low level specifications, certain Department of Defense Architecture Framework (Do-

DAF) (DoD CIO 2009) views and test cases. The SDD includes the mapping between the data to be col-

lected during the exercise, the initial exercise goals and the explanation of what the data means. 

 

1502



Gallant and Gaughan 

 

 
Figure 1: Database driven systems engineering infrastructure to link SoS information for an accurate and 

automated system. 

1.3 MATREX Tools Overview 

Two important tools that we use to export executable system tests and ultimately more architectural or 

implementation functionality are the MATREX ProtoCore and MATREX Advanced Testing Capability 

(ATC). 

1.3.1 MATREX ProtoCore 

The MATREX ProtoCore offers an Application Programmer’s Interface (API) that abstracts away the 

middleware protocols in order to allow the developers of models to focus on model behavior vice rewrit-

ing code to align with specific distributed simulation protocols. This API (Snively et al. 2006), reduces 

reliance on middleware services, data management techniques and architectural design patterns. In turn, it 

allows a simulation event to be middleware agnostic as the automated tool suite helps set up and confi-

gure models based on the SDD. Because ProtoCore offers a forward path for legacy object models and 

component models, future users can leverage existing software investments and minimize expenditure in 

development cycle resources by using ProtoCore to port their models to current distributed simulation 

standards, such as High Level Architecture (HLA) 1.3 Next Generation (NG), HLA 1516, Test and Train-

ing Enabling Architecture (TENA) and One Semi-Automated Forces (OneSAF) Simulation Object Run-

time Database (SORD). 

1.3.2 MATREX Advanced Testing Capability 

The MATREX Advanced Testing Capability (ATC) is a testing tool that generates test applications based 

on the design and over-the-wire communication distributed simulation requirements (McCray et al. 2008). 

The ATC allows for testing over the middleware layer based on a predefined sequence diagram including 

validation values. The ATC’s primary purpose for MATREX integration testing is its ability to perform 

meaningful and repeatable “black box” level testing on any component being integrated into the 

MATREX environment (see Section 2.2.3). This allows a simulation to test interactions with other simu-

lations without needing to run them in turn, reducing integration costs and test complexity. ATC also per-

forms the function of documenting specific test cases in order to provide reproducibility. The goal for the 

near future is to export sequence diagrams from the SDD into a standardized format for ingestion into the 

1503



Gallant and Gaughan 

 

ATC tool. This will allow for testing components directly from the design and technical contracts linked 

to system requirements further reducing integration costs. 

2 AUTOMATIC GENERATION OF ENGINEERING ARTIFACTS 

2.1 Current Community Issues 

There are many critical qualities that managers of a simulation environment must achieve: traceability 

from requirements to implementation and the resultant data collected, alignment of data semantics across 

applications, ease of maintenance and change propagation throughout the architecture. Aligning data se-

mantics is referring to ensuring applications are communicating based on a consistent understanding of 

the context and connotation of the information being shared. 

When integrating existing applications that are chosen because they share a common syntax, or even 

for political reasons, e.g. someone with the authority orders the use of a model, the integration of applica-

tions must be backward engineered to the functionality required. Systems are often chosen because of the 

object model and middleware protocol that they are compatible with. However, compatibility is more than 

the ability to communicate without compilation errors or crashing. The applications’ capability must pro-

vide necessary portions of a high level capability and they must provide that functionality in semantic 

harmony with the other applications within the architecture. 

We have been involved in dozens of events and exercises and in every single one, we have witnessed 

changes to the implementation throughout the integration and preparation. Most of the time, heavy change 

is still required up to only a few days or hours before the start of execution. Engineers often pull off tech-

nical miracles at the last second including working through the night or using one-time fixes that they 

know are not good long term solutions. Sometimes those changes work out, but frequently they are the 

cause of reduced availability, reliability and effective modeling. 

2.2 Benefits of Automatic Generation of Engineering Artifacts 

We have made great strides in implementing some of the core building blocks for generative program-

ming techniques to the distributed M&S domain. It has become clear to us that there are exponential re-

turns on investment when supporting the design and implementation of distributed M&S environments. 

We are planning on achieving some of these strategies and we are always exploring the successes of oth-

ers to improve on our solution for broader application within the military M&S community. 

Capturing the Systems Engineering data within a database-driven infrastructure has allowed us to 

have full traceability from the top-level functional requirements through the design and implementation 

choices through to the detailed technical engineering artifacts used by all phases of the exercise imple-

mentation. The engineering artifacts include detailed technical requirements, systems engineering views 

for design discussions and even executable test cases. The next step will be to generate artifacts that can 

be used by the simulation and management applications as shown in Figure 2. 

 

1504



Gallant and Gaughan 

 

 
 

Figure 2: An approach for automating much of the event life cycle. 

2.2.1 Top-Down Systems Engineering Benefits 

Capturing the modeling requirements through a top-down decomposition ensures that the engineers un-

derstand the functions and information exchanges that are required to accomplish the high level modeling 

functions. Whether there are applications that can meet those needs or not, the engineering staff under-

stands where there are weaknesses or workarounds necessary. 

Applications and interface messages can later be allocated to the functional decomposition. The ap-

plications’ ability to meet the functional requirements ensures traceability from the implementation back 

to the functional needs which can then be tied back to the purpose of the system as a whole. 

2.2.2 Code Generation for the Object Model 

The MATREX manages an HLA Federation Object Model (FOM) that many organizations throughout 

the military modeling and simulation (M&S) community use, including RDECOM, the Training and Doc-

trine Command (TRADOC) and the Army Test & Evaluation Command (ATEC). That FOM evolves and 

changes every six months through a formal review and release process. 

The MATREX ProtoCore includes a code generation capability to turn the FOM into a set of pro-

gramming classes that can be used by application developers. By centralizing the generation of classes 

based on the evolving FOM definition, there is less reliance on application developers to all make the 

same changes accurately. This also saves time and eases developer participation within the environment. 

If we had to rely on every developer to make the right changes and make them quickly, we would have a 

much larger management burden than just providing the new classes out to the developers in a single dis-

tribution. 

1505



Gallant and Gaughan 

 

2.2.3 Advanced System Black-Box Testing 

The ATC allows the user to build tests within its graphical user interface (GUI) to test each system inter-

face. It stores these tests in an Extensible Markup Language (XML) file. The XML file format is easily 

replicated by the MATREX SDD so that our ATC test cases are explicitly generated from systems engi-

neering decisions and design captured in our systems engineering database. 

This alleviates a great deal of time for our integration and testing staff by avoiding the need to ma-

nually change hundreds of tests and test processes due to a few small design changes. The code genera-

tion integration of ProtoCore with the ATC also means that object model changes are easy to adapt to 

over the evolving versions and instantiations of the MATREX architecture. 

The ATC can test each system individually according to the design captured within the systems engi-

neering infrastructure. These independent tests eliminate the complexity of a SoS architecture and can 

isolate interface details in an easy to execute testing environment. Since the tests are automatically gener-

ated from the design phase, test cases can be distributed to the developers the same day that the engineer-

ing decisions are being made. Development teams can code to the provided tests rather than spend their 

own time developing independent and possibly erroneous tests. 

Test cases can be developed that test a subset of the systems to be integrated to increase the scope of 

the testing while maintaining an appropriate level of isolation from the complex SoS environment. Test-

ing threads can further diagnose problems when integrating disparate applications built by numerous de-

velopment teams. 

2.2.4 Architectural Design Agreements 

In SoS environments like the MATREX, we rely on a Federation Agreements Document (FAD) to ex-

plain architectural interoperability agreements to all the developers that need to integrate their applica-

tions. That document captures agreements on the use of coordinate systems, dead-reckoning and the 

heartbeat timing and distance thresholds for objects . 

The MATREX ProtoCore software library is already used by many applications as their tool for inte-

roperability with the simulation middleware protocol so adding architectural compliance was the next ob-

vious step. We have added capabilities such as coordinate conversions and dead-reckoning (Aronson 

1997) to the MATREX ProtoCore. The additions can be made more flexible if they were driven by the 

systems engineering infrastructure. If architectural design decisions could be automatically driven by the 

systems engineers it would further decrease the time and chance for discrepancies in application adjust-

ments as the technical characteristics of the system are changed. 

The design for dead-reckoning was kept dynamic so an operator could change the dead-reckoning 

distance and timing thresholds during run-time. This allows the operator to control the execution perfor-

mance and accuracy from a central point. This can be used to recover the system from technical issues of 

slow performance, to accelerate the scenario without flooding the network or to change the dead-

reckoning attributes of forces based on spatial considerations such as prioritizing updates for entities with-

in an area of interest for the analysis of the scenario. 

2.2.5 System Configuration 

Configuration of the participating systems within a SoS architecture are both application-specific as well 

as based on the scaling strategy and scenario that will be executed. By capturing and linking application 

configuration requirements to scenarios and functional requirements for the architecture, we could map 

configuration options to the appropriate use and automatically export the proper configuration depending 

on the scenario and functions the systems engineers require for any given instantiation of the architecture. 

The M&S infrastructure such as the middleware and its configuration is also based on the scale and 

architecture of the implementation required. As engineers are making design decisions within the systems 

1506



Gallant and Gaughan 

 

engineering infrastructure, the middleware configuration is predictable and can also be automatically ex-

ported from the systems engineering tool. 

2.2.6 Integrated Scenario Development and Initialization 

The MATREX SDD is currently limited to the functions required rather than the scenario in which those 

functions will be used. As we add the scenario information within the SDD, we will be able to further 

predict the appropriate system configuration to execute the scenario. We will also be able to remotely in-

itialize the SoS environment from a central point. 

Our design pattern for simulation initialization is to provide the scenario details such as initial plat-

form attributes and force laydown over the simulation middleware at the beginning of the exercise. The 

structure of the information and the design paradigm are already in place to expand the SDD to incorpo-

rate scenario information and export the necessary engineering artifacts to configure simulation manage-

ment tools, such as simulation initialization, data collection and execution monitoring. We already use 

community standards for the storage of the scenario information so integration with popular community 

tools will be straightforward. 

A subtle benefit for incorporating the scenario information within the systems engineering tool is that 

in many cases the functional design depends on how the scenario will be executed. Similar to how mili-

tary operations depend on the mission, the execution of the mission with M&S applications also depend 

on many parameters, many of which are based on the scenario. 

2.2.7 Integrated Application Deployment 

We can already remotely deploy applications to lab machines and we can even remotely launch applica-

tions based on a set of well defined configuration files. We will be expanding this capability with a look 

at virtualization technology to improve the automation and flexibility based on the systems engineering 

design and configuration choices.  

 As the automation increases in this area, the ability to execute analysis events without large efforts 

from engineers improves. We can imagine a future that includes an analyst using the systems engineering 

tool to design, deploy, configure and manage the SoS architecture based on accredited models. The ex-

ecution run could occur on a representative set of lab machines that can be setup on the fly to accommo-

date the captured execution configuration. These machines could be at various geographic locations with 

results be compiled and sent to the analyst automatically when complete. 

2.2.8 Active Design-Based System Monitoring 

As we capture more information about the execution environment, more information will be available to 

recognize when the system is performing adequately and when the system is beginning to fail. Active 

monitoring and system management can help engineers recognize issues early so they can fix them with-

out a lot of wasted execution time and cycles. 

 Monitoring information exchanges at run-time ensures that the implementation does not deviate from 

the design. A part of the monitoring includes monitoring performance via response time of applications, 

queue lengths of applications sending and receiving information and machine diagnostics such memory 

footprints and processor loads. 

3 APPLICATION OF GENERATIVE PROGRAMMING 

Generative programming is the act of automatically generating executable computer programming arti-

facts from a higher level source. The benefits include an ability to represent the execution concepts and 

engineering decisions within an easier to manage format rather than having to manage code which can 

become laborious and tedious. Generative programming, also known as automatic programming is not 

1507



Gallant and Gaughan 

 

new to the software engineering discipline (Czarnecki et al. 2000). It has matured over many years 

enough that lessons learned can be confidently applied to distributed M&S. We believe that the founda-

tion that we have created on the MATREX program for automatically generating executable test cases 

and engineering details could prove to be the first step in the further application of generative program-

ming techniques described within this section. 

3.1 Approaches on Domain Analysis for a Domain Specific Language 

Warfare changes as rapidly as fast, or even faster than technology. M&S architectures are often built to 

meet only a subset of warfare and they are usually built to study different issues within an area of warfare. 

An organization’s analytical focus drives functional requirements for the simulation SoS. The resolution 

and fidelity of their focus differs depending on their intended outcomes and their areas of expertise. 

 Many projects have attempted to build domain models (Evans 2003) of warfare with varying levels of 

success. Domain modeling is the act of modeling a particular capability specific to a discrete domain. 

However, warfare elements cannot be discrete when analyzing how the deployed systems are going to in-

teract with other deployed systems, an unpredictable environment and an unpredictable enemy. The use of 

those domain models to any simulation environment is always riddled with difficulties. The subject mat-

ter experts (SMEs) for their specific area of warfare modeling almost always disagree with either the ac-

curacy or the level of resolution of the domain model. 

 Warfare changes too rapidly for a single referential domain model to exist. A major strength of Unit-

ed States Armed Forces is their ability to adjust to our enemies. Combating diverse enemies in different 

parts of the world requires unique tactics, techniques and procedures (TTPs) for each theater. Even within 

a single branch of the Armed Forces, the way they accomplish their mission can differ between theater 

operations. Furthermore, tactics within the same theater have changed over short periods of time. For ex-

ample, the networked fires procedures of US troops in Iraq have been changed as the threat has changed 

in composition and reaction to US forces. 

3.2 Areas for Application of Aspect-Oriented Techniques  

Aspect-Oriented Programming (Jacobson et al. 2005) is a strategy for increasing modularity of software 

by separating cross-cutting patterns from core business logic. The encapsulation of broad and repeated 

application concerns provides flexibility and easy adjustments to implementation details that are neces-

sary but independent of the core business logic. 

The majority of military models have been built for stand-alone use by their project offices. The inte-

gration of models into a SoS architecture is typically an afterthought. The base business logic of the ap-

plications are often integrated with distributed simulation protocols such as Distributed Interactive Simu-

lation (DIS), HLA and TENA, and their respective object models after the models have already proven 

useful as a stand-alone tool for analysis. This add-on functionality is done to meet the protocol specifica-

tion and often based on a specific environment’s architectural guidelines for interoperability elements like 

dead-reckoning and heart-beating. 

The add-on nature of an interoperability library lends itself to aspect-oriented programming since the 

core business logic (the actual modeling rather than the software written to provide the infrastructure for 

the model) is already separated from the simulation middleware details. Further encapsulating specific 

portions of the simulation middleware interoperability logic can lead to better flexibility in making ad-

justments as necessary when migrating an application into additional SoS environments or as an architec-

ture evolves over time. 

Furthermore, if the aspects for architectural interoperability were driven by the Systems Engineering 

toolset, then changes could be made very quickly and adjusted based on testing results or any late notice 

technical requirement alterations. 

1508



Gallant and Gaughan 

 

3.3 Code Generation from Pseudocode in a SoS Architecture 

In order to allow for easier modification and traceability from the logic to both functional requirements 

and design decisions the functional logic can be captured in Pseudocode. However, capturing pseudocode 

in a format that can generate executable code (Roy, 2006) is non-trivial for domain agnostic applications. 

The limitless possibilities of the implementation of software require pseudocode definitions and code 

generation tools to account for a great deal of permutations. This results in lengthy and detailed pseudo-

code that could be equally represented with fourth generation programming languages. Fourth generation 

programming languages like the Scala programming language (Wampler et al. 2009), provide tighter con-

trol of syntax guidance and problem notification during compilation. 

 The narrow breadth of the military M&S domain and implementation choices provide us the benefit 

of limiting possible permutations of the generated software. We already have software libraries to assist in 

the middleware protocol compatibility that we could configure and initialize from the same source as the 

pseudocode translation to software. 

 The previously mentioned capabilities to export configuration information for the middleware con-

nection library provides the basis for the generated code. The ProtoCore software library already provides 

code generated classes that represent the object model and a set of static API methods that can be built in-

to the Pseudocode. The ATC tool can already generate a system shell that successfully joins the middle-

ware and sends and/or receives information. The foundation for creating a working application within our 

SoS architecture is already in place. 

 Since we already have a mechanism to automatically generate the computing infrastructure to connect 

to the architecture middleware, we have separated the functional logic from the foundation of the software 

application. This practice provides the most benefit when algorithms can be separated from the data used 

within the algorithm. We could capture the functional logic and algorithms of models within Pseudocode 

and retain the data files separately. The verification and validation of the application needs to occur with-

in the SoS environment and for the scenario that will be used. Verification and validation becomes easier 

if the application’s structure, functional logic and data are customized for the SoS environment that it will 

be run in. 

 The subsequent work remaining involves capturing function execution within Pseudocode that is 

based on the interfaces that our systems engineering tool manages. For our environment, models require 

extensive and stringent accreditation based on subject matter expertise and validated algorithms. Genera-

tion of mature models will be difficult and a goal for the long term, but in the meantime generation of sur-

rogate applications to replace unavailable applications or fill gaps in the SoS architecture will be benefi-

cial. 

4 PERCEIVED LIMITATIONS AND RECOMMENDATIONS FOR THE FUTURE 

The value of generative programming techniques has been tremendous for integrating disparate systems 

that are separately funded and managed. However, there is a limit to the semantic integration of models 

when we can only translate and manipulate the results of the models through their interfaces. The models 

themselves just do not align in some cases. 

Many projects have attempted to provide translations between object models to facilitate interopera-

bility between models that work on different object models. The problem with that approach is that the 

models do not provide a quality mapping between their internal structures and any object model because 

the mapping is syntactical matching of best available options. Interoperability goes well beyond the abili-

ty to communicate with common data structures (Tolk et al. 2003) but extends through and beyond se-

mantic synchronization. 

A framework for structuring the integration of atomically encapsulated military functions could pro-

vide the ability for model developers to implement their software applications within a well-structured 

suite of software building blocks that could be rearranged as necessary to meet high level requirements. 

This framework would need to provide an ability to connect functions via information transportation. The 

1509



Gallant and Gaughan 

 

systems engineering of such a framework would need to hierarchically organize and connect functions to 

account for heavily related processing dependencies and reuse of often used information. For example 

most military functions rely on ground truth of the entities to be effective. The modeling of entities and 

the resultant updates referred to as ground truth need to be provided to multiple recipients where each re-

cipient would likely use the information differently. Each of the intended uses of that information need to 

be captured within their respective function interfaces. The requirement of publishing ground truth is the 

union of all the user interface requirements. The framework needs to be focused on information use so 

many of the available data elements would not need to be published when no subsequent military function 

would need to use the information to execute their respective models. 

ACKNOWLEDGMENTS 

This paper is based on work executed over the last four years for which we’d like to acknowledge some 

of the personnel most involved in its development and maturation. Those personnel are: Sid Antommar-

chi, Tracey Beauchat, Jon Clegg, Jim Gallogly, David Itkin, Rich Leslie, Richard Mangieri, Lee Mangold, 

Tom McAfee, Paul McCray, Rachel Offutt, Keith Snively, Jeff Swauger, Jeff Truong, and John Vintiles-

cu. We’d like to also acknowledge our management personnel that helped provide vision, resources and 

encouragement: Chris Bailey, Tom Hurt, Tom Mathis, Joe McDonnell, Chris Metevier, Dave Poole, and 

Gary Smith. Finally, we’d like to acknowledge ASA(ALT) and RDECOM for providing the funding ne-

cessary to continue these critical efforts. 

REFERENCES 

Acquisition Community Connection at Defense Acquisition University (DAU). 2008. MIL-STD-3022 

DoD Standard Practice Documentation of V&V for Models and Simulations. Available via 

https://acc.dau.mil/CommunityBrowser.aspx?id=205916 

Aronson, J. 1997. Dead Reckoning: Latency Hiding for Networked Games. Available via 

http://www.gamasutra.com/view/feature/3230/dead_reckoning_latency_hiding_for_.php 

Czarnecki K. and U. Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications. 1st
 

ed. Addison-Wesley Professional. 

Department of Defense (DoD) Chief Information Officer. 2009. DoD Architecture Framework 2.0. Avail-

able via http://cio-nii.defense.gov/docs/DoDAF%20V2%20-%20Volume%201.pdf. 

Jacobson I. and P. Ng. 2005. Aspect-Oriented Software Development with Use Cases. 1
st
 ed. Addison-

Wesley Professional. 

Jamshidi, M. 2008. System of Systems Engineering. 1
st
 ed. Wiley. 

McCray, P. and K. Snively. 2008. Functional Component Testing for Distributed Simulations. Simulation 

Interoperability Workshop Spring Conference, April 2008 

Page, E. and D. Lunceford. 2001. Architectural principles for the U.S. Army's simulation and modeling 

for acquisition, requirements and training (SMART) initiative. 2001 Winter Simulation Conference 

(WSC'01) - Volume 2, 2001 pp.767-770. 

Roy. G.  2006. Designing and Explaining Programs With a Literate Pseudocode. Journal on Educational 

Resources in Computing (JERIC) by Association for Computing Machinery (ACM). Volume 6, Issue 

1 (March 2006). ACM, New York, NY USA 

Snively, K. and P. Grim. 2006. ProtoCore: A Transport Independent Solution for Simulation Interopera-

bility. Simulation Interoperability Workshop, September 2006 

Tolk, A. and J. Muguira. 2003. The Levels of Conceptual Interoperability Model. Simulation Interopera-

bility Workshop Fall Conference, September 2003 

Tufarolo, J.,  R. Leslie and D. Lewis. 2004. Distributed Integration for the V0.5 MATREX. Simulation In-

teroperability Workshop, Spring 2004, 04S-SIW-131. 

Wampler, D. and A. Payne. 2009. Programming Scala. 1
st
 ed. O’Reilly Media 

1510



Gallant and Gaughan 

 

AUTHOR BIOGRAPHIES 

SCOTT GALLANT is a Systems Architect with Effective Applications Corporation. He has over fifteen 

years experience in distributed computing including Army modeling and simulation. He has led technical 

teams on the MATREX program for distributed software and federation design, development and execu-

tion management in support of technical assessments, data analysis and experimentation. He is leading the 

MATREX Systems Engineering team for the implementation of the described product infrastructure. 

Scott Gallant also currently serves as the System Architect for the MATREX program. He earned his Ba-

chelor of Science in Computer Science from George Mason University. His email address is 
<Scott@EffectiveApplications.com>. 

 

CHRIS GAUGHAN is the Deputy Technology Program Manager of the MATREX program at the Si-

mulation & Training Technology Center within the US Army RDECOM. From 2004-2009 he worked at 

the Edgewood Chemical Biological Center where he served as the Configuration Manager of the Chemi-

cal-Biological-Radiological-Nuclear Simulation Suite. During his tenure at ECBC, he has been the prin-

cipal investigator for numerous Joint Science and Technology Office projects focused on CBRN M&S. 

He has provided M&S analytical support to the Joint Program Executive Office for Chem-Bio Defense 

and to the TRADOC Maneuver Support Battle Lab. He received his Master of Science and Bachelor of 

Science in Electrical Engineering from Drexel University in Philadelphia, PA. His email address is  
<Chris.Gaughan@us.army.mil>. 

1511


